数据结构(七)-排序 - jerry

Welcome to Aiiyx !

数据结构(七)-排序

1、排序

排序算法(英语:Sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法。

排序算法的稳定性

稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。

当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。

(4, 1)  (3, 1)  (3, 7)(5, 6)

在这个状况下,有可能产生两种不同的结果,一个是让相等键值的纪录维持相对的次序,而另外一个则没有:

(3, 1)  (3, 7)  (4, 1)  (5, 6)  (维持次序)
(3, 7)  (3, 1)  (4, 1)  (5, 6)  (次序被改变)

不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。做这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,(比如上面的比较中加入第二个标准:第二个键值的大小)就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。

排序方法分为:内部排序,外部排序;

简单的排序方法O(n2),先进的排序方法O(nlogn),基数排序O(dn);插入排序,交换排序,选择排序,归并排序,计数排序。
排序方法的稳定性:取决于该方法采取的策略,不是由一次具体的排序结果决定的。

2、直接插入排序 ( 插入排序 )

将待排序记录插入已排好的记录中,不断扩大有序序列,笼统点,一句话,“将待排序记录插入有序序列,重复n-1 次”

例: 52,49,80, 36,14,58,61进行直接插入排序。

  1. 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  2. 最坏时间复杂度:O(n2)
  3. 稳定性:稳定

3、折半插入排序 ( 插入排序 )

在直接插入排序中,查找插入位置时采用折半查找的方法。

时间复杂度O( n2 )。比直接插入排序减少了比较次数。折半插入排序是稳定的排序算法。

4、希尔(shell)排序( 插入排序 )

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

先将待排序列分割成若干个子序列,分别进行直接插入排序,基本有序后再对整个
序列进行直接插入排序。
步骤:

1、分成子序列(按照增量dk);
2、对子序列排序(直接插入排序);
3、缩小增量,重复以上步骤,直到增量dk=1. .
增量序列中最后一个增量一定是1,如: ..9,5,3,2, 1和…13,4, 1。如没有明确说明增量序列可以选择...3,2,1或...5,3,2, 1。

例:希尔排序(52,49,80, 36,14, 58,61)。

希尔排序是不稳定的。时间复杂度大约为O( n3/2 )。

直接插入排序、折半插入排序、shell排序均是插入排序。

5、冒泡排序 (交换排序)

冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

冒泡排序算法的运作如下:

  1. 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

交换过程图示(第一次):

那么我们需要进行n-1次冒泡过程,每次对应的比较次数如下图所示:

时间复杂度

  1. 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  2. 最坏时间复杂度:O(n2)
  3. 稳定性:稳定

冒泡排序的演示

效果:

6、快速排序(交换排序)

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤为:

  1. 从数列中挑出一个元素,称为"基准"(pivot)。
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

时间复杂度

  1. 最优时间复杂度:O(nlogn)
  2. 最坏时间复杂度:O(n2)
  3. 稳定性:不稳定

从一开始快速排序平均需要花费O(nlog n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

冒泡排序、快排均是交换排序

7、简单选择排序 ( 选择排序 )

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

选择排序分析

红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

时间复杂度

  • 最优时间复杂度:O(n2)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定(考虑升序每次选择最大的情况)

8、堆排序(选择排序)

判断序列是否构成堆

方法:用Ki作为编号为i的结点,画一棵完全二叉树,比较双亲和孩子容易判断是否构成堆。

建立堆

排序

9、归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

时间复杂度

  1. 最优时间复杂度:O(nlogn)
  2. 最坏时间复杂度:O(nlogn)
  3. 稳定性:稳定

例:对{24, 85, 47, 53, 30, 91}归并排序。

10、常见排序算法效率比较